Posts tagged click

Cause & Effect: Piano Key Click

Alright listen up… literally.  Listen for clicks when you play each note on your piano.  The cause? Well… kinda like the last post of Cause & Effect, there are many many things in a piano that could make noise but the most common – 2 things: Loose flange screws and loose flange pins. 

Ok calm down… i know you don’t know what a flange is so i’ve conveniently uploaded a pic for you.  Shown here are the hammer, shank and flange.  The flange is the jointed piece at the bottom that is attached to the hammer rail.  When the hammer strikes the string, believe it or not, the force will go running down the shank and into the flange.  If the flange screw is loose, you’ll hear a click.  After you tighten the flange screw, if it still makes noise, dollars to donuts it’s the flange pin itself.  The flange pin is a small little steel pin.  When it gets worn out and the joint is too loose, it’ll manifest that looseness by clicking.  There you have it! The most common source of ‘clicks’ in pianos.  And like the other post on Cause & Effect… better to ask the technician to remedy the situation.

The Broadwood Piano – remaking the silk purse

Recently i was hired to work on a Broadwood grand.  Now for those of you who don’t know, Broadwood has an illustrious place in the world of piano making.  Established (get this) in 1728 (yes you read correctly), this company made pianos for royalty (obtaining the Royal Warrant for manufacturing – see lower left photo) and had probably the most famous historical endorser Beethoven himself.  Upon gifting a grand piano from Broadwood, Beethoven wrote a thankyou letter back in February 1818: ” I shall regard it was an altar upon which I will place the choicest offerings of my mind to the Divine Apollo”.  Think about the fact that this company was established 125 YEARS before Steinway.  Now obviously in the early days they were manufacturing clavichords, harpsichords and square grand pianos.  The Broadwood company became known for their actions (internal mechanisms) and also is credited with the sustain pedal.

The piano i had the opportunity to work on was a “barless” grand meaning that it had no reinforcement bars or ‘struts’ to hold the tension of the almost 18 tonnes of string tension.  Instead, Broadwood made a full perimeter frame which appears to be almost double in thickness – making this an extremely heavy instrument.  (see photo of strings) The major problem with the piano i worked on was that it had a cracked action rail.  If you’ve ever seen the inside of a grand piano, you’ll know that all of the hammers are screwed in place to one long rail called the action rail.  If the action rail is cracked, many things happen – first, you don’t have a solid base to attach the hammers.  That creates ‘travel’ where the hammers will jostle about not hitting squarely the strings.  Second, believe it or not, if a screw is so much as even loose on an action rail, you’ll hear the subsequent ‘click’ of the hammer.  So there were a number of hammers clicking before i attended to it.  And finally, the regulation. Regulation is the process of fine adjustments to streamline the flow from key to hammer.  It’s what makes a piano feel ‘right’ or positive.  With a cracked action rail, the hammers wouldn’t stay in alignment.  After quoting on this job, it then struck me… “what have i got myself into?”  Action rails have nearly 200 screw holes, thickness requirements down to the thousandths and fore and aft placements that need tending to.  Well i’m always up for a challenge.  And so before ripping this piano apart, i went back to the calculations.  There’s a joint near the hammer called the flange.  And for those who are interested, mathematically, you should be able to compute flange height.  Simply, the string height inside the body of the piano minus the length of bore (LOB) – which is the centre of the shank to the tip of the hammer SHOULD equal the bird’s eye.  The what? The bird’s eye is the nickname given to the joint of the flange.  See? It looks like an eye… kinda… ok maybe not… but it’s a steel pin surrounded by cloth inserted into wood.  So after calculating the bird’s eye, i managed to then thickness sand the new rail just under 3 thousandths of an inch (about the thickness of a piece of paper).  So once everything was installed? The moment i had been waiting for… it WORKED! but it just needed a lot of adjustments refitting the old parts.  It was a fun experience and more than that, exciting to bring a tired Broadwood (the silk purse) back to life.

Go to Top